3x^2+3x^2+2x^2=180

Simple and best practice solution for 3x^2+3x^2+2x^2=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+3x^2+2x^2=180 equation:



3x^2+3x^2+2x^2=180
We move all terms to the left:
3x^2+3x^2+2x^2-(180)=0
We add all the numbers together, and all the variables
8x^2-180=0
a = 8; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·8·(-180)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*8}=\frac{0-24\sqrt{10}}{16} =-\frac{24\sqrt{10}}{16} =-\frac{3\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*8}=\frac{0+24\sqrt{10}}{16} =\frac{24\sqrt{10}}{16} =\frac{3\sqrt{10}}{2} $

See similar equations:

| -3(3p+3)-2(2-11p)=3(1+4p) | | 3x+6/3=10 | | d/26=4 | | 2(y-6)=14 | | 2x^2+78+(-x)=180 | | a2−1.5=0.75 | | 858=22z | | 23x+4=35x−2;x= | | 0.75p=0.4p= | | 666=18h | | -2/5x+7=15 | | 6x+20=4x-20 | | 15=3.4t+1.6t | | 2.5h+1=3h+2. | | 2-3n=-2(n+10) | | 20=m/23 | | –6m=–7m−9 | | 7a-20=-13 | | 3x+5=2x=12=4x | | 5-2/x=14 | | -2=-8=2x | | 41=2m+2 | | 3x-8(-3+5×)=24 | | 2.5x+1.5x=8 | | b/2+7=13 | | 15^3x-8=9 | | 3x2-42=0 | | -14=-2(2s-5) | | 2x/4+4x=72 | | -10=5(6+c) | | p(5)=-30 | | p+24-99=33 |

Equations solver categories